IBHL Math (Logarithm)

Created By Rakesh Jha

Part A

1

If
$$\log_5 120 + (x-3) - 2\log_5 (1-5^{x-3}) = -\log_5 (0.2-5^{x-4})$$
, then x is

2 Show

$$7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right) \text{ is equal to } \log 2$$

3 Show

. The value of
$$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \dots + \frac{1}{\log_{43} n}$$
 is $\frac{1}{\log_{43} n}$

4 Show

$$\log_7 \log_7 \sqrt{7\sqrt{(7\sqrt{7})}}$$
 is equal to $1-3\log_7 2$

5 Show

If
$$y = a^{\frac{1}{1 - \log_a x}}$$
 and $z = a^{\frac{1}{1 - \log_a y}}$, then x is equal to $x = a^{\frac{1}{1 - \log_a z}}$

6

Given that $h = \log_b 3$ and $k = \log_b 4$, express the following in terms of h and/or k.

- (a) $\log_b 12$
- (b) log₆ 16
- (c) $\log_b 0.75$ [no calculator]

7

Consider the functions $f(x) = e^{2x+1}$ and $g(x) = \ln \sqrt{x}$. [calculator allowed]

- (a) (i) Find $f^{-1}(x)$ (ii) Find $g^{-1}(x)$
- (b) Show that $g(f(x)) = x + \frac{1}{2}$

8

Solve the equation $(3^x)(4^{2x+1}) = 6^{x+2}$ and express the solution in the form $x = \frac{\ln p}{\ln q}$ where $p, q \in \mathbb{Z}$. [**no** calculator]

9

Express as a single logarithm: $\frac{5}{2}\log_a x + \log_a (x+1) - \log_a \sqrt{x}$

IBHL

Math (Logarithm)

Created By Rakesh Jha

Part B

No calculator allowed on these exercises.

- 1. Rewrite the expression $2\log_b 3 5\log_b 2 + \log_b 8$ in the form $\log_b \left(\frac{m}{n}\right)$ where m and n are integers.
- 2. Solve for x exactly: $2\log_b x \log_b 2 = \log_b 32$
- 3. Given that $y = 2^x$ show that $4^{x-1} + 8^x$ is equivalent to $\frac{1}{4}y^2 + y^3$.
- **4.** Solve for x exactly: $\log_2(x^2-1) \log_2(x+1) = 2$
- 5. Solve for x: $81^{x-2} = 27$
- **6.** Find the exact solution(s) to the equation: $e^{2x} + e^x = 6$
- 7. If $y = \log_3 \sqrt{3x 4}$ express x in terms of y in the form $x = \frac{a^y + b}{c}$ where a, b and c are integers.
- 8. Solve for x exactly: $\ln(x+1) + \ln(x-1) = 1$

Part C

1. [5 marks]

Solve the equation
$$2-\log_3(x+7)=\log_{rac{1}{3}}2x$$
 .

2. [5 marks]

Let $f(x) = \ln x$. The graph of f is transformed into the graph of the function g by a translation of $egin{pmatrix} 3 \ -2 \end{pmatrix}$, followed by a reflection in the x-axis. Find an expression for g(x) , giving your answer as a

3

If $\log_2 4\sqrt{2} = x$, $\log_z y = 4$, and $y = 4x^2 - 2x - 6 + z$, find y. (A) 0 (B) 2 (C) $\frac{5}{2}$ (D) 4 (E) 16

IBHL

Math (Logarithm)

Created By Rakesh Jha

4. [5 marks]

Solve the equation
$$4^{x-1} = 2^x + 8$$
.

5. [6 marks]

Solve the following system of equations.

$$\log_{x+1} y = 2$$

$$\log_{y+1} x = rac{1}{4}$$

6. [5 marks]

Consider
$$a=\log_2 3 imes \log_3 4 imes \log_4 5 imes \ldots imes \log_{31} 32$$
. Given that $a\in\mathbb{Z}$, find the value of a .

7. [5 marks]

Solve the equation $8^{x-1}=6^{3x}$. Express your answer in terms of $\ln 2$ and $\ln 3$.