total marks on test: 75

Test: Functions - Basics

Show your working clearly in the space provided.

Part I - NO calculator >> Questions 1-6

- 1. Consider the quadratic function $g(x) = 3x^2 + 12x + 8$.
 - (a) Express g(x) in the form $g(x) = a(x-h)^2 + k$. State the values of a, h and k. [4 marks]

(b) State the domain and range for g(x).

[4 marks]

(c) Briefly explain why the inverse of g(x) is not a function.

[2 marks]

- (d) Restrict the domain of g(x) in such a way that the domain is as large as possible but so that the inverse of g(x) will be a function. State this 'new' restricted domain for g(x). [2 marks]
- (e) For g(x) having the domain stated in (d), find $g^{-1}(x)$.

[3 marks]

2. Draw an accurate sketch of the absolute value function y = -|x+2| + 5. Clearly label (giving coordinates) the 'vertex' of the graph and any x-intercepts or y-intercepts. [5 marks]

Test: Functions - Basics

3. State the domain and range for each function.

(a)
$$f(x) = \sqrt{4-x}$$

[3 marks]

(b)
$$h(x) = 10^{x-3}$$

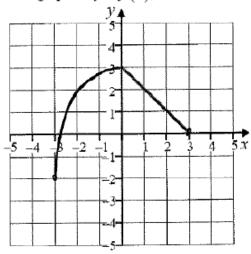
[3 marks]

(c)
$$g(x) = \frac{5}{x+5}$$

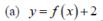
[3 marks]

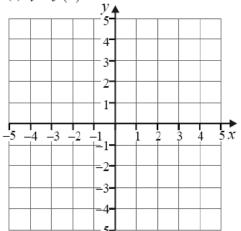
- **4.** Let $f(x) = \frac{1}{x+1}$, $x \ne -1$ and $g(x) = \frac{x}{3} 1$. If $h = g \circ f$, find:
 - (a) h(x) and express it as a single simplified fraction.

[3 marks]

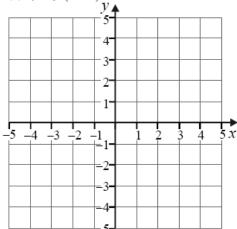

(b) $h^{-1}(x)$ and express it as a single simplified fraction

[3 marks]

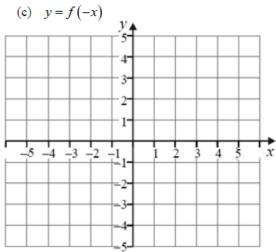

Test: Functions - Basics

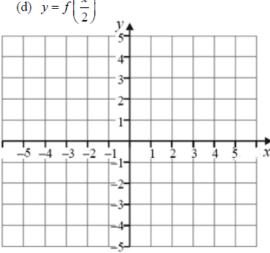

5. The diagram shows a sketch of the graph of y = f(x), $-3 \le x \le 3$.

[3 marks each]

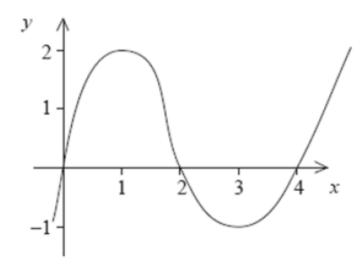


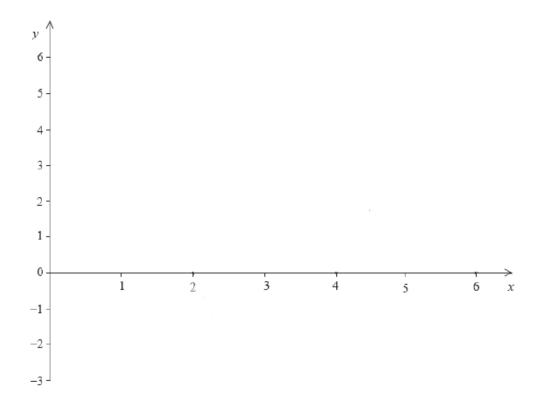
Sketch each of the graphs with the following equations.




(b)
$$y = f(x+2)$$

(c)
$$v = f(-x)$$


(d)
$$y = f\left(\frac{x}{2}\right)$$


Test: Functions - Basics

6. Below is the graph of the function y = f(x)

[3 marks]

On the coordinate plane below, sketch a graph $y = \frac{1}{|f(x)|}$

Test: Functions - Basics

Part II - calculator is allowed >> Questions 7-9

- 7. Consider the functions $f(x) = \frac{2x+3}{x-4}$ and $g(x) = \frac{x-1}{x+1}$.
 - (a) State the domain and range for f(x).

[2 marks]

(b) If (c, 0) is the x-intercept for the graph of f(x), then find the value of c.

[2 marks]

(c) (i) Find $f^{-1}(x)$.

[3 marks]

(ii) Why must (0, c) be the y-intercept for the graph of $f^{-1}(x)$?

[2 marks]

(d) Find the value of g(f(3)).

[2 marks]

(e) Find an expression for g(f(x)).

[2 marks]

Test: Functions - Basics

- **8.** Let $f(x) = \frac{4-x^2}{4-\sqrt{x}}$.
 - (a) State the largest possible domain for f.

[2 marks]

(b) Solve the inequality $f(x) \ge 1$. show work/method

[4 marks]

9. State the domain and range for each function.

(a)
$$f(x) = \frac{1}{x^2 - 9}$$

[3 marks]

(b)
$$g(x) = \ln(x+4)$$

[3 marks]