Functions - Basics

Part I - No calculator - Qs 1-3

[worked solutions on next page]

1. State the domain and range for each function.

(a)
$$f(x) = \sqrt{9-x^2}$$

(b)
$$g(x) = 2^x$$

(c)
$$h(x) = \frac{1}{2x^2 - 1}$$

2. Let
$$f(x) = \frac{2}{x-4}$$
, $x \neq 4$ and $g(x) = \frac{x}{2} - 1$, $x \neq 4$

If $h = g \circ f$, find:

- (a) h(x)
- (b) $h^{-1}(x)$, where h^{-1} is the inverse of h.

3. Consider the quadratic function $g(x) = 2x^2 - 16x + 29$.

- (a) Express g(x) in the form $a(x-h)^2 + k$.
- (b) The graph of the function is a parabola. State the coordinates of the vertex and the equation for the axis of symmetry.
- (c) Is the function f a one-to-one function? Explain.

Part II - calculator allowed - Qs 4-7

4. State the domain and range for each function.

(a)
$$f(x) = \frac{1}{x^2 + 3x - 10}$$

(b)
$$g(x) = \sqrt{\frac{8x-4}{x-3}}$$

5. Given that $h(x) = (x-3)^2$, $x \ge 3$, find the inverse of $h^{-1}(x)$, and state its domain & range.

6. Given that f(x) = 2x - 1, $g(x) = x^2 - 3$ and $h(x) = \frac{1}{x+3}$, find the following:

(a)
$$h(g(x))$$

[leave no brackets in answers]

- (b) f(h(x))
- (c) $g(h^{-1}(x))$
- (d) Show that $f^{-1}(f(x)) = x$

7. Consider the function $h(x) = \frac{3}{x^2 - 1}$

- (a) Sketch a complete and accurate graph of h. Clearly label any x- or y-intercepts, and any asymptotes in your sketch.
- (b) State the range of h.