1

[Maximum mark: 7]

Consider the function $g(x) = 4\cos x + 1$, $a \le x \le \frac{\pi}{2}$ where $a < \frac{\pi}{2}$.

- (a) For $a = -\frac{\pi}{2}$, sketch the graph of y = g(x). Indicate clearly the maximum and minimum values of the function. [3]
- (b) Write down the least value of a such that g has an inverse. [1]
- (c) For the value of a found in part (b),
 - (i) write down the domain of g⁻¹;
 - (ii) find an expression for $g^{-1}(x)$. [3]

2

[Maximum mark: 5]

Find the value of the constant term in the expansion of $x^4 \left(x + \frac{3}{x^2}\right)^5$.

3

[Maximum mark: 4]

Find the solution of $\log_2 x - \log_2 5 = 2 + \log_2 3$.

4

[Maximum mark: 5]

Consider the graphs of y = |x| and y = -|x| + b, where $b \in \mathbb{Z}^+$.

- (a) Sketch the graphs on the same set of axes.
- (b) Given that the graphs enclose a region of area 18 square units, find the value of b. [3]

[2]

5

[Maximum mark: 18]

Consider the polynomial $P(z) = z^5 - 10z^2 + 15z - 6$, $z \in \mathbb{C}$.

(a) Write down the sum and the product of the roots of
$$P(z) = 0$$
. [2]

(b) Show that
$$(z-1)$$
 is a factor of $P(z)$. [2]

The polynomial can be written in the form $P(z) = (z-1)^3(z^2 + bz + c)$.

(c) Find the value of
$$b$$
 and the value of c . [5]

(d) Hence find the complex roots of
$$P(z) = 0$$
. [3]

Consider the function $q(x) = x^5 - 10x^2 + 15x - 6$, $x \in \mathbb{R}$.

- (e) (i) Show that the graph of y = q(x) is concave up for x > 1.
 - (ii) Sketch the graph of y = q(x) showing clearly any intercepts with the axes. [6]