

Then the region is actually a surface 's'. A surface \int , $\int \int f(x, y, z) \frac{ds}{ds}$ surface
The particular of our surface is one.
The particular of our surface is out a
co-entimate plane give us R.
a) $\int \int f(x, y, z) \frac{dz}{ds} = \int \int f(x, y, g(x, y)) \frac{1}{\sqrt{\frac{3x}{x} + \frac{1}{dy} + \frac{1}{x}}}} d$ b) $\iint_S f(x,y,z) ds = \iint_R f(x,y(\alpha,\epsilon)z) \sqrt{2\alpha^2 + 3\epsilon^2 + 1} dA$
for surface $y = g(x,z)$ c) $\iint_S f(x,y,z) ds = \iint_R f(g(y,z), yz) \sqrt{g_y^2 + g_z^2 + 1} dA$ for surface $x = f(\lambda z).$ $f(x+2y+z)$ ds, S , $y+z=4$ inside
 S ($(x+2y+z)$ ds, S) $y+z=4$ inside $Z = 4-y$, $g_x = 0$, $g_y = -1$ $\begin{array}{c}\n\begin{array}{c}\n\int \left(x+2y+4-y \right) \sqrt{0^2 + (-1)^2 + 1} \, dA. \\
R.\n\end{array} \\
\begin{array}{c}\n\downarrow = 4 \\
\hline\n\end{array} \\
\begin{array}{c}\n\$

 $\overleftrightarrow{=}$ \rightarrow $\overleftrightarrow{=}$ \rightarrow $\overleftrightarrow{=}$ = $\iint_{R} (x+y+4) \int z dA.$ $\left(\frac{x}{x}\right)_1 \rightarrow x$ $=\int_{0}^{\frac{2\pi}{\pi}} \int_{0}^{1} (r \cos\theta + r \sin\theta + 4) \sqrt{2}$ $\int x = r cos \theta$ $Y=rsin\theta$. XX $= 452 \pi$ Mass if $f(x,y,z)=x+2y+z$ is mass density function. # parametric surface : $for f(x,y,z)$ $g \ x = x (yv)$ $y = \gamma$ (u, v) $Z = Z(4,1)$ $\overrightarrow{\gamma}(u,v) = x \hat{i} + y \hat{j} + z \hat{k}$ $f(x,y,z) = \overline{\gamma}(y,v) = \chi(y,v) i + \gamma(y,v) j +$ $Z(y,v)$ k $X = \sqrt{y^2 + z^2}$ $X = \sqrt{y^2+z^2}$
 $\begin{cases} y=y & z=v \end{cases}$ $\begin{cases} y=y & z=v \end{cases}$
 $\begin{cases} x=\sqrt{u^2+v^2} \end{cases}$ function already solved for
a variable, let other variable be parameter. $\vec{\gamma}(4V) = \alpha \hat{j} + y \hat{j} + z \hat{k}$

 $\vec{\gamma}(u,v) = \sqrt{u^2+v^2} \hat{i} + u \hat{j} + v \hat{k}$ $\frac{x^2+y^2=z^2}{z^2+z^2}=r^2$ 眨 $x^2+y^2=x^2$
 $x=3x00$ $y=1000$ $y=0$
 $y=3500$ $y=4000$ $y=0$
 $y=0$
 $y=0$
 $y=0$ $\vec{r}(4,1) = x i + y j + z k$ $= u \cos v f + u \sin v f + u k$ # For the special case of a surface S with equation $z = f(x,y)$, where (x,y) lies in D and f has continuous partial derivative,
we take u and v as parameters, the parameteric egn are $x=y, y=y, z=f(uv)$ $\gamma_{\mu} = 1 \hat{i} + 0 \hat{j} + \frac{\partial f}{\partial \mu} \hat{k}$ $\gamma_{V} = 0 \hat{i} + 1 \hat{j} + \frac{\partial f}{\partial V} \hat{k}$ $\gamma_u \times \gamma_v = \begin{pmatrix} 1 & 1 & \frac{1}{v} & \frac{1}{v} \\ 1 & 0 & \frac{1}{v} & \frac{1}{v} \\ 0 & 1 & \frac{3}{v} & \frac{1}{v} \end{pmatrix}$ $= -\frac{\partial f}{\partial u} \hat{i} - \frac{\partial f}{\partial v} \hat{j} + \hat{k}$ $|| r_{1} \times r_{1} || = \sqrt{(\frac{\partial f}{\partial t})^{2} + (\frac{\partial f}{\partial t})^{2} + 1}$

= $\int_{0}^{2\pi} \frac{\sqrt{2}}{2} \left[u^2 \right]_{u=0}^{u=\gamma} dV$ $=\frac{\sqrt{2}}{2}\int_{0}^{2\pi}\gamma^{2}dV$ = $\frac{52}{2} r^2$ [V] $\sqrt[2]{5} = \frac{52 \pi r^2}{4} - \frac{52 \pi \sqrt{2}}{4 \sqrt{3} \sqrt[2]{2}}$
 $\frac{x+y}{2}$
 $S.A = \pi r \sqrt{\frac{2}{3} \sqrt[2]{2}}$ verify: $8.4 = 11 \times \sqrt{x^2 + h^2}$ $=\pi r \sqrt{r^2+r^2}$ $= \pi \gamma \sqrt{2 \gamma^2}$ $= \pi r J_2 r$ $= 277$ $\int_S \frac{x-y}{\sqrt{az+1}} ds.$ \sum_{x} $S: \overline{\tau}(uyv) = (u+v) \hat{i} +$ $(4-v)$ $f + (u^2+v^2)k$ \mathcal{S}_{1} $0 \leq u \leq 1$, $0 \leq v \leq 2$ Surface avec = $\iint ||\vec{r_u} \times \vec{r_v}|| dA$ Ponametric Surface $\iint_{D} f(\vec{r}(uyv)) \parallel \vec{r_u} \times \vec{r_v} \parallel dA.$ $\vec{r}_u = \hat{i} + \hat{j} + 2\hat{k}$ \vec{x} = $\hat{i} - \hat{j} + 2v\hat{k}$

