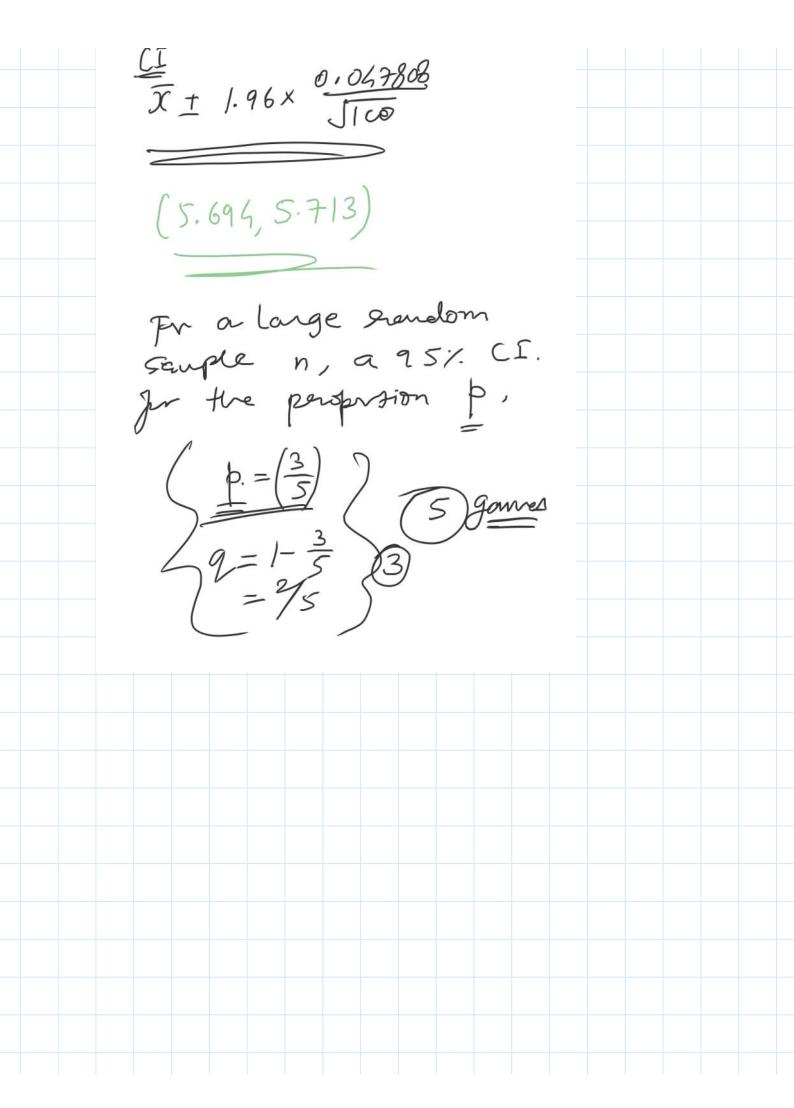

Friday, February 26, 2021 6.03 PM	Confidence interval
Sample: Smean Svariance. [X] $X = U$ Volume (e: $S^2 = \frac{1}{n-1} S(X; -\overline{X})^2$ [n data) [95%] [98%]	Friday, February 26, 2021 6:03 PM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Spopulation: meen, vanance. Mean: (11) 52
95%	
95%	$X = \mathcal{U}$
198%	Varience: $5^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2$ $(n data)$
198%	
Confidence interval.	198%
	Confidence interval.



of The neighbor in grams of borgs of cocoa bears are Known to have a st den of 6 grams. A Sandom sample of bugs is neighted with the following rooms. 758, 748, 749, 752, 757, 760, L751, 745, 757, 761 calculate a 95% confly. for the near very of QCI) bug of cocoa booms. $\bar{x} = 754$, 6 = 6 gms. ₹± 1.96(€) => 759 ± (1.96× €) €¥ (750,3,757,7)

Confidence interval for the mean of a large semple from any distribution: large random sample (n ≥ 30) 95% CI (X-1.965, X+1.965) $S^2 = \frac{1}{n-1} \mathcal{E}(x; -\bar{x})^2$ (7-score for the required Elevel of confidence.

of the neight Zamien gms of a R.S. of so handters were recorded	
$\Xi x = 10003.3$, $\Xi x^2 =$ 2002665 calculate 95% . CI for the mean neight of homster. Soly $N \ge 30$ ($N = 50$)	
$\overline{x} = \frac{10003.3}{50} = \frac{200.07}{50}$ $S = \frac{1}{50} \left(\sum x^2 - \left(\sum x \right)^2 \right) = 27.44$	
$S = \frac{5.24}{\sqrt{x} - 1.96 \frac{s}{\sqrt{n}}}, x + 1.96 \frac{s}{\sqrt{n}}$ $198.6, 201.s$	

produce metal red which are			
- produce metal red which are	_		
5.7 cm long. A grandom sample	e		
of Las rods produced by			
marchine (
x 5.606 x 25.65 5-65 £ x 65.70			
$f \left[\frac{15}{3} \right]$	_		
x 5.706x<5.75 5.75 6x 65.80			
J 36 18			
calculate 95% CI for mea	n		
$S = \frac{1}{2} \left(\sum_{m} m^2 f \right) - \left(\sum_{m} m f \right)^{\frac{3}{2}} = 1.0$			
	002 &		
7x = 5.7035 , 5m2f = 3253.218			

