| Ca | alculi | us re | visi | on | | | | | | | | | | | | |------|--|-----------------------------|-------------|----------------------|-----------|--------------|---------------------|-----------------------------------|-------------|--|----------|-------|--|--|---| | | | | | | D. A | | | | | | | | | | | | Inur | saay, ivi | ay 13, 20 | JZI | 5:57 A | AIVI | [Maximum n | | | | | | | | (. | | | | | | | | - 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0 | The derivati | ve of a fun | ction f is | given by | f'(x) = 2e | e^{-3x} . The gra | aph of f p | asses thro | ough $\left(\frac{1}{3}, \frac{1}{3}\right)$ | 5). | | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Find $f(x)$. | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | | | | | | | | | | | | | | _ | | | 1 | | | | | | | | | | | | | | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 20000 | | | | | | 7. | [Maximum r | mark: 7] | | | | | | | | | | | | | | | | A particle P | starts from | point O a | and moves | s along a s | traight line | . The grap | h of its ve | locity, vms | s^{-1} | | | | | | | | after t seco | nas, for 0 | $\leq l \leq 0$, is | Shown in | the follow | ing diagran | п. | | | | | | | | | | | | | 1 | / \ | \ | | | | | | | | | | _ | / \ | | | | | | | | | | | | | | | 0 | 2 | 2 | 1 | $\stackrel{+}{6} \xrightarrow{t}$ | | | | | | | | | | | | | | | | \ / | \wedge | | | | | | | | | | | | | | | | \ / | _ | | | | The graph o | | | | | | | | | | | | | | | | | The function | | | | | | | | | | | | | _ | | | | It is known t $s(2) = s(5)$ | | | nce of 15 | metres in | the first 2 s | seconds. I | is also kr | own that | | | | | | | | | (a) Find th | | | (2). | | | | | | [2] | | | | | | | | (b) Find the | | | | he first 5 s | econds. | | | | [5] | | | | | | | | . , | | | | | | | | | [-] | _ | 500000 | | | | |-----|---|-----|---------|--|--|--| | 9. | [Maximum mark: 15] | | | | | | | | Let θ be an obtuse angle such that $\sin \theta = \frac{3}{5}$. | | | | | | | | (a) Find the value of $\tan \theta$. | [4] | | | | | | | (b) Line L passes through the origin and has a gradient of $\tan \theta$. Find the equation of L . | [2] | | | | | | | Let $f(x) = e^x \sin x - \frac{3x}{4}$. | | | | | | | | | (6) | | | | | | | (c) Find the derivative of f . | [5] | | | | | | | The following diagram shows the graph of f for $0 \le x \le 3$. Line M is a tangent to the graph of f at point P . | | | | | | | | <i>y</i> | | | | | | | | | | | | | | | | P | M | \longrightarrow_x | | | | | | | | 10 | | | | | | | | (d) Given that M is parallel to L , find the x -coordinate of P . | [4] | 10. | . [Maximum mark: 14] | | | | | | | | $(-3, -1)^{\frac{3}{2}}$ | | | | | | | | Let $y = (x + x)^{\alpha}$. | | | | | | | | Let $y = (x^3 + x)^{\frac{3}{2}}$.
(a) Find $\frac{dy}{dx}$.
(b) Hence find $\int (3x^2 + 1)\sqrt{x^3 + x} \ dx$. | [3] | | | | | | | (b) Hence find $\int (3x^2+1)\sqrt{x^3+x} dx$. | [3] | | | | | | | Consider the functions $f(x) = \sqrt{x^3 + x}$ and $g(x) = 6 - 3x^2\sqrt{x^3 + x}$, for $x \ge 0$. | | | | | | | | The graphs of f and g are shown in the following diagram. | | | | | | | | <i>y</i> | R | 0 1 2 x | | | | | | | | g\ | | | | | | | | | | | | | | | | The shaded region R is enclosed by the graphs of f , g , the y -axis and $x = 1$. | | | | | | | | (c) Write down an expression for the area of R. | [2] | | | | | | | (d) Hence find the exact area of R. | [6] | 3. | [Maximum mark: 6] | | | | | | | | Consider the function $f(x) = x^2 e^{3x}$, $x \in \mathbb{R}$. | | | | | | | | (a) Find $f'(x)$. | [4] | | | | | | | (b) The graph of f has a horizontal tangent line at $x=0$ and at $x=a$. Find a . | [2] | . 1 | (****** | | | | | | | 3. | [Maximum i | mark: 6] | | | | | | | | | | | |--|--------|---|------------|--------------------|-------------------------------|----------------|-------------|----------------|--------|---------|--|--|--|--| | | | | | e function $f(x)$ | $=x^2e^{3x}, x\in\mathbb{R}.$ | | | | | | | | | | | | | | (a) Find | | | | | | | [4] | | | | | | | | | | | a horizontal tang | gent line at | x = 0 and | at $x = a$. F | ind a. | [2] | | | | | | | | | (S) THE 9 | , apri oi j ilas e | | , on a mile at | a – v anu | α. Γ | | [~] | a . | | | | | | | | | | | | | | | | 4. | [Maximum i | | | | | | | | | | | | | | | | | |), for $0 \le x \le 1$. | | | | | | | | | | | | | | (a) Sketc | h the graph of | f" on the grid b | elow: | | | | [3] | | | | | | | | 010000000000000000000000000000000000000 | | | 1,5- | 0.5 | | | | | | | | | | | | | 000000000000000000000000000000000000000 | | | | | | > | | | | | | | | | | 00000000 | | -0.5 | 0 | -0.5 | | 15 x | | | | | | | | | | | | | 0.5 | (b) Find t | he x-coordinate | es of the points | | | | | [3] | | | | | | | \$2000 | 3 | | | | | | | | | | | | | | | | | (c) Hence | e find the values | s of x for which | the graph | of f is cor | icave-down | | [2] | | | | | | | | | (c) Hence | e find the values | s of x for which | the graph | of f is cor | cave-down | |
[2] | | | | | | | | 199000000000000000000000000000000000000 | | | s of x for which | | | | |
[2] | | | | | | | | | | | | | | | | [2] | | | | | | | | 100000000000000000000000000000000000000 | | | | | | | |
[2] | | | | | | | | 000000000000000000000000000000000000000 | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] | | | | | | | | | | | | | | | |
[2] |