Ca	alculi	us re	visi	on											
					D. A										
Inur	saay, ivi	ay 13, 20	JZI	5:57 A	AIVI										
		[Maximum n								(.					
	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	The derivati	ve of a fun	ction f is	given by	f'(x) = 2e	e^{-3x} . The gra	aph of f p	asses thro	ough $\left(\frac{1}{3}, \frac{1}{3}\right)$	5).				
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Find $f(x)$.													
	10 10 10 10 10 10 10 10 10 10 10 10 10 1														
	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -														_
	1														
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
												20000			
	7.	[Maximum r	mark: 7]												
		A particle P	starts from	point O a	and moves	s along a s	traight line	. The grap	h of its ve	locity, vms	s^{-1}				
		after t seco	nas, for 0	$\leq l \leq 0$, is	Shown in	the follow	ing diagran	п.							
				1											
				/ \	\										_
						/ \									
				0	2	2	1	$\stackrel{+}{6} \xrightarrow{t}$							
							\ /	\wedge							
							\ /								
															_
		The graph o													
		The function													_
		It is known t $s(2) = s(5)$			nce of 15	metres in	the first 2 s	seconds. I	is also kr	own that					
		(a) Find th			(2).						[2]				
		(b) Find the				he first 5 s	econds.				[5]				
		. ,									[-]				
															_

			500000			
9.	[Maximum mark: 15]					
	Let θ be an obtuse angle such that $\sin \theta = \frac{3}{5}$.					
	(a) Find the value of $\tan \theta$.	[4]				
	(b) Line L passes through the origin and has a gradient of $\tan \theta$. Find the equation of L .	[2]				
	Let $f(x) = e^x \sin x - \frac{3x}{4}$.					
		(6)				
	(c) Find the derivative of f .	[5]				
	The following diagram shows the graph of f for $0 \le x \le 3$. Line M is a tangent to the graph of f at point P .					
	<i>y</i>					
	P					
	M					
	\longrightarrow_x					
	10					
	(d) Given that M is parallel to L , find the x -coordinate of P .	[4]				
10.	. [Maximum mark: 14]					
	$(-3, -1)^{\frac{3}{2}}$					
	Let $y = (x + x)^{\alpha}$.					
	Let $y = (x^3 + x)^{\frac{3}{2}}$. (a) Find $\frac{dy}{dx}$. (b) Hence find $\int (3x^2 + 1)\sqrt{x^3 + x} \ dx$.	[3]				
	(b) Hence find $\int (3x^2+1)\sqrt{x^3+x} dx$.	[3]				
	Consider the functions $f(x) = \sqrt{x^3 + x}$ and $g(x) = 6 - 3x^2\sqrt{x^3 + x}$, for $x \ge 0$.					
	The graphs of f and g are shown in the following diagram.					
	<i>y</i>					
	R					
	0 1 2 x					
	g\					
	The shaded region R is enclosed by the graphs of f , g , the y -axis and $x = 1$.					
	(c) Write down an expression for the area of R.	[2]				
	(d) Hence find the exact area of R.	[6]				
3.	[Maximum mark: 6]					
	Consider the function $f(x) = x^2 e^{3x}$, $x \in \mathbb{R}$.					
	(a) Find $f'(x)$.	[4]				
	(b) The graph of f has a horizontal tangent line at $x=0$ and at $x=a$. Find a .	[2]				
		. 1	(******			

		3.	[Maximum i	mark: 6]										
				e function $f(x)$	$=x^2e^{3x}, x\in\mathbb{R}.$									
			(a) Find							[4]				
					a horizontal tang	gent line at	x = 0 and	at $x = a$. F	ind a.	[2]				
			(S) THE 9	, apri oi j ilas e		, on a mile at	a – v anu	α. Γ		[~]				
		a .												
		4.	[Maximum i											
), for $0 \le x \le 1$.									
			(a) Sketc	h the graph of	f" on the grid b	elow:				[3]				
		010000000000000000000000000000000000000			1,5-									
					0.5									
		000000000000000000000000000000000000000						>						
		00000000		-0.5	0	-0.5		15 x						
					0.5									
			(b) Find t	he x-coordinate	es of the points					[3]				
	\$2000	3												
			(c) Hence	e find the values	s of x for which	the graph	of f is cor	icave-down		[2]				
			(c) Hence	e find the values	s of x for which	the graph	of f is cor	cave-down		 [2]				
		199000000000000000000000000000000000000			s of x for which					 [2]				
										[2]				
		100000000000000000000000000000000000000								 [2]				
		000000000000000000000000000000000000000								 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				
										 [2]				

