

pirobability of a Type I error seduce but
will give a hyper proceeding of making
Type I error.
LOS (more them 5%) then the type I
error morecres.
Hence we generally take LOS = 5%
(> became it balances both the
egror together.
Ex: E3
)
$$n = 15$$
, H_0 : $p := 0.2$
 $0,1$ entical region.
 $p(x \le 1) = 0.167$
Significance level = 16.7%
(i) $p(Type I error) = 16.7\% = 0.167$
(ii) $p(Type I error) = 16.7\% = 0.167$
(iii) $p(x > 1 | p = 0.1) = 45.09\%$
 $= 1 - p(x = 0, 1)$
 $= 1 - 0.5490$

P(Type II error) = 0.451

Q)

2. A test is being carried out on a Poisson distribution H_0 : $\lambda = 6$ against $H_1: \lambda < 6$. A 2% test is to be carried out.

- i) Find the critical region for the test.
- ii) Calculate the actual significance level of the test.
- (ii) State the probability that a Type I error occurs.
- (1) If in fact $\lambda = 3$, calculate the probability of a Type II error.

$$P(x=0) = 0.00248 < 0.02$$

$$P(x=1) = 0.0173 < 0.02$$

$$P(x=1) = 0.0619 > 0.02$$

(ritical region
$$\rightarrow \chi = (0,1)$$

i) Actual level of Significance.
 $= 1.7\%$
 $= 1.7\%$

(iv)
$$P(Type II err/(1=3) = P(x>1/(1=3))$$

$$= 1 - p(x \leq 1 \mid \lambda = 3)$$